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The steady-state height-height correlation function for the (1 + 1)-dimensional 
single-step model is calculated in a large-scale Monte Carlo simulation. Analysis 
of the data yields a universal ratio of scaling amplitudes which differs from the 
value obtained recently from a mode-coupling calculation. An empirical form 
for a universal scaling function is also presented. 
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The Kardar-Parisi-Zhang (1) (KPZ) equation 

Oh/Ot = v V eh  + �89 2 + ~/ (1) 

describes the stochastic growth of a rough surface h(r, t) whose local 
velocity along a chosen direction on average depends on the local orienta- 
tion of the surface. Examples of such growth processes include the Eden 
model, ballistic deposition, and restricted solid-on-solid models (see, e.g., 
refs. 2 and 13 for recent reviews). The roughness of such a surface exhibits 
interesting scaling properties both in space and in time. One quantity 
which characterizes this scaling behavior is the steady-state height-height 
correlation function 

C(r,t)= lim (I-Ah(r+r o , t+ to ) -Ah(r  o,to)] 2) 
t o ~  oo 

(2) 

where zih(r, t ) =  h(r, t ) -  h(t) is the deviation from a mean surface height 
/~(t) at time t in a given realization and ( . . . )  denotes an average over 
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different realizations of the stochastic growth process. In the absence of 
finite-size corrections, the height fluctuation at a given instant has the 
power-law behavior at large r = [r[, 

C(r, O) - Ar r2~ (3a) 

where ~ is known as the roughness exponent. The auto-height correlation 
at large t grows as 

C(O, t) "~ Art  2~ (3b) 

Equations (3a) and (3b) can be considered as limiting cases of a scaling 
form 

C(r, t) ~- A~r2r ~) (4) 

where z = ~/fl and S is a scaling factor related to A r and At. 
For the KP Z  equation in (1 + 1) dimensions (one-dimensional surface 

moving in a two-dimensional space) with an uncorrelated Gaussian noise 
t/, the exponents ~ = 1 and fl = 1 are known to be exact. (2'13) Recently, Hwa 
and Frey (3) showed that, by choosing S =  [2[ A)/2, the scaling function 
F(~) in (4) becomes universal. A mode-coupling calculation by Hwa 
and Frey yielded a numerically determined scaling function F(r) which 
has the limiting behavior F(r)  ~ 0.69r 2/3 at large r. Thus, according to their 
calculation, there is a universal relationship between the two scaling 
amplitudes Ar and At and the nonlinear parameter 2, 

At = 0.69 I~[ 2/3 A 4/3 (5) 

The analysis of Hwa and Frey differs from a number of previous 
studies, (4) which treat the nonlinear term in (1) perturbatively. The sugges- 
tion by Hwa and Frey that the closed set of mode-coupling equations (5) is 
exact is intriguing from a theoretical point of view. In this paper I present 
high-precision Monte Carlo data on the single-step model (6) with sublattice 
updating. The parameters Ar and 2 for this lattice model have been 
calculated exactly. (7) For  two different sets of these parameters, the 
same ratio R = A t/([)~[ 2/3 A 4/3) = 0.725 _+ 0.005 is obtained. I also present an 
empirical expression for the scaling function F which fits well with 
simulation data. 

The single-step model in (1 + 1) dimensions can be described in terms 
of a surface oriented diagonally on a two-dimensional square lattice. (6) The 
surface at a given instant can be specified by a set of column heights {hi}, 
i =  1 ..... L, with the "single-step" constraint hi+ 1 - h i =  +1. In a sublattice 
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updating scheme, one first examines heights of all odd columns. At a local 
minimum of the surface hi = hi_ 1 - 1 = hi+ i - 1, a growth event h i --, hi + 2 
takes place with a probability p+. At a local maximum, hi=hi_l  + 1 = 
hi+ 1+ 1, an evaporation event hi-- ' ,hi-2 takes place with a probability 
p - .  After this is done, the same growth and evaporation rules are applied 
to all even columns. This completes one time step. The nature of the 
growth rules allows for simultaneous updating of heights on a given sub- 
lattice. Periodic boundary conditions hi+L = hi are assumed throughout. 

It is well known that the single-step model can be mapped to a one- 
dimensional lattice-gas model with single-particle occupancy and nearest- 
neighbor hopping. (6/The occupation number of a cell i is simply given by 
ai= ( h i - h i _ l  + 1)/2. A growth (evaporation) event corresponds to a par- 
ticle hopping to the empty cell on its left (right). It has been shown that, 
for a system of size L with a fixed number of particles N, the steady-state 
probability distribution of the lattice-gas problem at the completion of each 
updating cycle has the following factorized form: 

P ( { ~ i } ) = F I - P + ]  ul (6) 
I_1 - p - J  

where N1 = Z c/2i=1 ~ is the total number of particles in cells with odd 
indices/v) In ref. 7 exact expressions for Ar and 2 have been obtained from 
this distribution. In the case N = L / 2 ,  which corresponds to a surface 
oriented along the diagonal of the square lattice, we have 

4[(1 - p - ) ( 1  _ p  +)]  1/2 

A r = 2 _ p + _ p _  + 2 [ ( 1 - p + ) ( 1 - p - ) ] l / 2  (7a) 

)o = - ( p  + - p - ) / [ ( 1  - p  + )(1 - p - ) ]  1/2 (7b) 

Due to the diverging relaxation time ~ ~ L z with the system size L, it 
is usually difficult to simulate the steady-state behavior of a large system. 
In our case, since the steady-state distribution function factorizes, we can 
circumvent this problem by generating typical steady-state configurations 
according to (6). Specifically, for a given p+ and p , we compute the 
average occupancy of odd cells, 

2N 1 2 [ ( 1 - p  ) ( l - p + ) ]  m 
L = 2 - 2 p -  + 2 [ ( 1 - p + ) ( 1 - p - ) ] l / 2  (8) 

For the typical configuration, we assume that exactly N1 [-as determined 
1 from (8)] particles are in the odd cells, and the remaining N2= 5L--N1 

particles are in the even cells. These N1 (N2) particles are then randomly 
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distributed among the odd (even) cells in the following way. Each time we 
randomly pick up one of the odd (even) cells. Repeat the process if 
necessary until an empty cell has been found. Fill the cell with a particle. 
We then look for the next empty cell and fill it with a particle until all N1 
(N2) particles are put into the cells. This configuration serves as the initial 
configuration for our growth simulation. 

I have simulated the model at a fixed p + =  1/2 and three different 
values of p - ,  0, 1/8, and 1/2. Using a multisite coding algorithm, (8) simula- 
tion of a L = 2 2o ' ~  1 0  6 system can be readily carried out. Although not 
necessary, I typically equilibrate the system over a period of about 1000 
Monte Carlo steps before taking the data. The particle configuration after 
every 1024 Monte Carlo steps is recorded and then compared with con- 
figurations that follow at intervals t = 1, 2, 4 ..... 1024 to determine C(r, t) 
as defined by (2) and averaged over r 0. [-The choice of exponentially 
increasing time intervals enables us to examine both the small- and 
large-time behavior of the correlation function without significantly 
increasing the computation time needed to take the data. Furthermore, 
since the dominant contribution to C(0, t) comes from large-wavelength 
fluctuations whose correlation (or relaxation) time increases algebraically 
with t, we expect that taking data more frequently will not significantly 
reduce the effect of statistical errors on the analysis presented below.] The 
data presented below are obtained from averages over 35 such repeated 
runs at p - = 0 ;  24 runs at p =1/8;  and 20 runs at p - = l / 2 .  T h e t o t a l  
amount of CPU time for the p = 0 simulation is about 200 min on an 
IBM3090 machine without vector facility. The p - =  1/8 simulation took 
twice as long to complete due to the more complicated procedure for 
generating the random bits. 

Table I contains data for C(0, t) from the simulation. Statistical errors 
generally increase with increasing t, but are less than 0.5 % in all cases. The 
case p - = p + =  1/2 is known to be described by (1) with 2 = 0 .  The 
exponents for the linear equation ~ are given by ~ = 1/2 and fi = 1/4. There 
is also an exact relation (1~ between the scaling amplitudes in this case, 
A J A r  = 2(v/rc) 1/2. The simulation data given in Table I at p - =  1/2 are in 
excellent agreement with the formula C(0, t ) = 2 ( v t / n )  ~/2 using the exact 
value v = 1 obtained by Kandel et al. (m  and Ar = 1 from (7a). 

For  p = 0 the data at t/> 2 fit well to the expression 

C(O, t ) =  At t2/3 + C O - C 1 t-1/3 (9) 

with A,=0.533,  Co=0.24, and C~=0.2. Using the values A t =  
4 x/~/(3 + 2 x / ~ ) =  0.97056... and 2 = - l / x / 2  = -0.7071... given by (7), we 
obtain 

R = At~ (1212/3 A4/3) = 0.725 (10) 
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Table I. Data for C(0, t) at p+ = 1 / 2  and Three Different Values of p -  

t p =0 p - =  1/8 p -  = I/2 

0 0 0 0 
1 0.568 0.664 1.001 
2 0.960 1.060 1.501 
4 1.515 1.611 2.187 
8 2.358 2.421 3.144 

16 3.673 3.642 4.477 
32 5.748 5.516 6.358 
64 9.042 8.436 9.002 

128 14.25 12.99 12.73 
256 22.52 20.21 18.04 
512 35.62 31.63 25.53 

1024 56.40 49.71 36.17 

In the case p = 1/8, da t a  at t >~ 8 can again  be fitted to (9) with ano the r  
set of pa rame te r s  A,  = 0.481, Co = 0.95, and  C1 = 0.9. The  ra t io  R = 0.721 in 
this case is consis tent  with (10) in view of the 0.5 % stat is t ical  errors  of the 
data.  F igure  1 shows the da ta  (scaled) in the two cases as c o m p a r e d  to (9) 
using the values for A, ,  Co, and  C1 given above.  The  l inear  behav io r  of 
each da t a  set with respect  to t 2/3 at  large t indicates  tha t  the l ead ing-order  
cor rec t ion  to scaling is a cons tan t  (~2/ (see also the review by Wolf(13)). 
A somewha t  higher  value for A, would  be ob ta ined  if no cor rec t ion  to 
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Fig. 1. Scaled data for C(0, t) against t -2 /3  at p - = 0  (open circles) and p = 1/8 (solid 
circles). Solid and dashed lines are calculated according to Eq. (9) using parameter values 
given in the text. 
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scaling were taken into account. We thus conclude that the simulation data 
support a universal value 0.725 _+ 0.005 for the ratio A,/(I).I 2/3 A4/~). 

Finally, I present the simulation data for C(r, t) at r = 2 ,  4, 8 ..... 512 
and p - = 0  and 1/8. For t = 0  the data in both cases are in very good 
agreement with the exact expression C(r, O) = Arr obtained from (6) for an 
even integer r. Figures 2a and 2b are scaling plots of the data according to 
the scaling form (4) without taking corrections to scaling into account. The 
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Fig. 2. Scal ing  plot  of  the s teady-state  he ight -he ight  corre lat ion  funct ion C(r, t) using exact  
values  for A r and  2. (a) p -  =0 ;  (b) p = 1/8. The  s a m e  plott ing symbol  is used for data  at 
a given t. 
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same plotting symbol is used for data at a given t but different r. The two 
data-collapsing curves agree well with each other, and agree with the 
limiting form F ( r ) =  0.725z 2/3 at large ~ as determined above. In the case 
p -  = 1/8, there are noticeable deviations from the universal curve for data 
at small r, which can be attributed to the correction-to-scaling terms as in 
Eq. (9). 

To obtain an analytical representation of the scaling function, I have 
analyzed the scaling curve for p -  = 0 in two limiting cases. At large r, the 
correction to F ( z ) =  0.725r 2/3 is of the form r -2/3. For small r, F ( r ) -  1 
approaches 0 as an exponential function of 3 -2/3. A good empirical form 
for F(r)  which fits the data is given by 

J'l + 3e -3'15T-2/3 for ~ < ~o 

F(z) = [0.725.c2/3 + 0.4~-2/3 for ~ >~ ~o 
(11) 

Figure 3 shows the scaled data for p - = 0  as compared to (11) in the 
region around %--2.3.  The agreement is satisfactory. 

To summarize, the steady-state height-height correlation function for 
the single-step model is obtained via Monte Carlo simulation of a large 
system. Analysis of the data at two different values of the evaporation rate 
p yields a universal amplitude ratio At/(1212/3 A4/3)= 0.725 + 0.005. This 
number is close to the value 0.58 obtained by Hwa and Frey via numerical 
solution of exact mode-coupling equations. An empirical form for the 
scaling function is also given. 
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Fig. 3. Scaled data for p -  = 0 as compared to the analync expression (11). 
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